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Two problems with this architecture:

● Passwords are insecure
○ Add MFA!

● Databases are leaky
○ Add PBKDF!

● Can we incorporate MFA into the 
key derivation function itself?
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MULTI-FACTOR KEY DERIVATION

FACTOR 01
eg. a Password 

FACTOR 02
eg. a  TOTP Code

FACTOR 03
eg. a U2F Token

FACTOR 04
eg. Biometric Data

MULTI-FACTOR 
DERIVED KEY

The MFKDF outputs a key as 
a function of all input factors
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STATIC KEY
One-Way Function (OWF)

STATIC KEY
???

FACTOR 01
eg. a Password 

hunter2

FACTOR 02
eg. a  TOTP Code

196353
778449
843812
234823

…
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αK,0

K

MFKDFDerive

αK,1
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αFA,0
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σFA

HOTP
K: Derived Key
H: HOTP Key
ct: Enc(H, K)

555555

333333

Δ=-222222

H: Dec(ct, K)
Next: 888888

Δ=-555555
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PBKDF

DK = PBKDF2(PRF, Password, Salt, Rounds, dkLen)

MFKDF
DK = MFAKDF(PRF, [f1,f2,...fn], Rounds, dkLen)

= PBKDF2(PRF, f1⋅f2⋅f3, Salt, Rounds, dkLen)

Intentionally inefficient!

Difficulty is on top of all 
authentication factors!
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user hash

user1 PBKDF(password)

user2 PBKDF(password)

user hash

user1 MFKDF(password, 
HOTP, …)

user2 MFKDF(password, 
HOTP, …)

users users
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≈40b

Key
≈40b
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Key
≈162b

Password
≈40b

Key
≈40b≈1 hour ≈10100 years
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Two problems with this architecture:

● Passwords are insecure
○ Add MFA!

● Databases are leaky
○ Add PBKDF!

● Can we incorporate MFA into the 
key derivation function itself?
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AUTH 
SERVER
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What happens if the password is lost?
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User Data

Data Encryption Key (DEK): Used to 
encrypt user data
● EncData = Enc(Data, DEK)

Data Encryption 
Key (DEK)

🔒 AES-256

Single point of failure

Key Encryption 
Key (KEK)

🔒 AES-256

🔒 PBKDF2

User Password

Key Encryption Key (KEK): Password-
derived key used to encrypt DEK
● EncKey = Enc(DEK, KEK)

Master Key
(MK) 🔒 AES-256

Master Key (MK): Centrally-stored key 
used to recover DEK
● RecKey = Enc(DEK, MK)
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THRESHOLD MULTI-FACTOR KEY DERIVATION

FACTOR 01
eg. a Password 

FACTOR 02
eg. a  TOTP Code

FACTOR 03
eg. a Recovery Code

2-OF-3 
DERIVED KEY

The MFKDF outputs a key as a 
function of any 2 input factors
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Key Stacking

FACTOR 01
eg. a Password 

FACTOR 02
eg. a  TOTP Code

FACTOR 03
eg. a Recovery Code

2-OF-3 
DERIVED KEY

The MFKDF outputs a key as a 
function of any 2 input factors
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← pbkdf2.com
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https://demo.mfkdf.com https://wallet.mfkdf.com



Key

CodePassword YubiKey

MFKDF

MFKDF 
Policy

IPFS
bafk...vx3u

IPNS
eigb...oaw
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Custodial Wallet Non-custodial Wallet MFKDF Wallet

✔ Portability

✔ Recoverability

✔ MFA

✔ Common Factors

✘ Decentralized

✘ Trustless

✘ Portability

✘ Recoverability

✘ MFA

✘ Common Factors

✔ Decentralized

✔ Trustless

✔ Portability

✔ Recoverability

✔ MFA

✔ Common Factors

✔ Decentralized

✔ Trustless



PBKDF2 is also used in…
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MFKDF Summary
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USABILITY & FACTOR 
COMPATIBILITY

EXPONENTIAL 
SECURITY

CLIENT-SIDE 
RECOVERY

POLICY
ENFORCEMENT

NEW & EXISTING APPLICATIONSHIGHLY PERFORMANT



https://github.com/multifactor/mfkdf

https://mfkdf.com

Thanks!
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https://arxiv.org/abs/2208.05586


