
Multi-Factor Key
Derivation Function
(MFKDF)

1

MFKDF

Ph.D. Student at UC Berkeley
https://nair.me · vivek@nair.me

Vivek Nair

2

https://nair.me

MFKDF 3

Acknowledgments

Password Management Service

4

CLIENT

❷ Auth Token

AUTH
SERVER

❶ Auth Request

(Password)

DATABASE

❸ Auth Token❹ Stored Data

MFKDF

Password Management Service

5MFKDF

Two problems with this architecture:

● Passwords are insecure
AUTH

SERVER

DATABASE

CLIENT

❷ Auth Token

❶ Auth Request

(Password)

❸ Auth Token❹ Stored Data

Password Management Service

6MFKDF

Two problems with this architecture:

● Passwords are insecure
● Databases are leaky

AUTH
SERVER

DATABASE

CLIENT

❷ Auth Token

❶ Auth Request

(Password)

❸ Auth Token❹ Stored Data

Password Management Service

7MFKDF

Two problems with this architecture:

● Passwords are insecure
○ Add MFA!

● Databases are leaky

AUTH
SERVER

CLIENT

❷ Auth Token

❶ Auth Request

(Password + 2FA)

❸ Auth Token❹ Stored Data

DATABASE

Password Management Service

8MFKDF

Two problems with this architecture:

● Passwords are insecure
○ Add MFA!

● Databases are leaky
○ Add PBKDF!

AUTH
SERVER

CLIENT

❷ Auth Token

❶ Auth Request

(Password + 2FA)

❸ Auth Token❹ Encrypted Data

 PBKDF

DATABASE

Password Management Service

9MFKDF

Two problems with this architecture:

● Passwords are insecure
○ Add MFA!

● Databases are leaky
○ Add PBKDF!

AUTH
SERVER

CLIENT

❷ Auth Token

❶ Auth Request

(Password + 2FA)

❸ Auth Token❹ Encrypted Data

 PBKDF

DATABASE

Password Management Service

10MFKDF

Two problems with this architecture:

● Passwords are insecure
○ Add MFA!

● Databases are leaky
○ Add PBKDF!

● Can we incorporate MFA into the
key derivation function itself?

AUTH
SERVER

CLIENT

❷ Auth Token

❶ Auth Request

(Password + 2FA)

❸ Auth Token❹ Encrypted Data

 PBKDF

DATABASE

11MFKDF

MULTI-FACTOR KEY DERIVATION

FACTOR 01
eg. a Password

FACTOR 02
eg. a TOTP Code

FACTOR 03
eg. a U2F Token

FACTOR 04
eg. Biometric Data

MULTI-FACTOR
DERIVED KEY

The MFKDF outputs a key as
a function of all input factors

12MFKDF

STATIC KEY
One-Way Function (OWF)

STATIC KEY
???

FACTOR 01
eg. a Password

hunter2

FACTOR 02
eg. a TOTP Code

196353
778449
843812
234823

…

MFKDF

αK,0

K

MFKDFDerive

αK,1

1st
derivation

FactorDerive FactorDerive …

FactorUpdate FactorUpdate …

αFA,0 αFB,0 …

WFA,0 WFB,0 …

αFA,1 αFB,1 …

σFA σFB …

13

MFKDF 14

αK,0

K

MFKDFDerive

αK,1

FactorDerive

FactorUpdate

αFA,0

WFA,0

αFA,1

σFA

HOTP
K: Derived Key
H: HOTP Key
ct: Enc(H, K)

555555

333333

Δ=-222222

H: Dec(ct, K)
Next: 888888

Δ=-555555

Other Factors:

15MFKDF

Entropy & Brute Force

16MFKDF

PBKDF

DK = PBKDF2(PRF, Password, Salt, Rounds, dkLen)

MFKDF
DK = MFAKDF(PRF, [f1,f2,...fn], Rounds, dkLen)

= PBKDF2(PRF, f1⋅f2⋅f3, Salt, Rounds, dkLen)

Intentionally inefficient!

Difficulty is on top of all
authentication factors!

MFKDF

user hash

user1 PBKDF(password)

user2 PBKDF(password)

user hash

user1 MFKDF(password,
HOTP, …)

user2 MFKDF(password,
HOTP, …)

users users

MFKDF

Password
≈40b

Key
≈40b

Code
122b

Password
≈40b

YubiKey
160b

MFKDF

2/3

Key
≈162b

Password
≈40b

Key
≈40b≈1 hour ≈10100 years

Password Management Service

20MFKDF

Two problems with this architecture:

● Passwords are insecure
○ Add MFA!

● Databases are leaky
○ Add PBKDF!

● Can we incorporate MFA into the
key derivation function itself?

AUTH
SERVER

CLIENT

❷ Auth Token

❶ Auth Request

(Password + 2FA)

❸ Auth Token❹ Encrypted Data

 PBKDF

DATABASE

✓

Password Management Service

21MFKDF

AUTH
SERVER

CLIENT

❷ Auth Token

❶ Auth Request

(Password + 2FA)

❸ Auth Token❹ Encrypted Data

 PBKDF

DATABASE

What happens if the password is lost?

NIST SP 800-57: Key Recovery

22MFKDF

User Data

Data Encryption Key (DEK): Used to
encrypt user data
● EncData = Enc(Data, DEK)

Data Encryption
Key (DEK)

🔒 AES-256

Single point of failure

Key Encryption
Key (KEK)

🔒 AES-256

🔒 PBKDF2

User Password

Key Encryption Key (KEK): Password-
derived key used to encrypt DEK
● EncKey = Enc(DEK, KEK)

Master Key
(MK) 🔒 AES-256

Master Key (MK): Centrally-stored key
used to recover DEK
● RecKey = Enc(DEK, MK)

23MFKDF

THRESHOLD MULTI-FACTOR KEY DERIVATION

FACTOR 01
eg. a Password

FACTOR 02
eg. a TOTP Code

FACTOR 03
eg. a Recovery Code

2-OF-3
DERIVED KEY

The MFKDF outputs a key as a
function of any 2 input factors

24MFKDF

Key Stacking

FACTOR 01
eg. a Password

FACTOR 02
eg. a TOTP Code

FACTOR 03
eg. a Recovery Code

2-OF-3
DERIVED KEY

The MFKDF outputs a key as a
function of any 2 input factors

Key

Email

Security
Questions

Recovery
Code

OR
Password TOTP

AND

2/3

MFKDF

Performance

26MFKDF

mfkdf.com

27MFKDF

← pbkdf2.com

Centralized & Decentralized Demos

28MFKDF

https://demo.mfkdf.com https://wallet.mfkdf.com

Key

CodePassword YubiKey

MFKDF

MFKDF
Policy

IPFS
bafk...vx3u

IPNS
eigb...oaw

MFKDF

Custodial Wallet Non-custodial Wallet MFKDF Wallet

✔ Portability

✔ Recoverability

✔ MFA

✔ Common Factors

✘ Decentralized

✘ Trustless

✘ Portability

✘ Recoverability

✘ MFA

✘ Common Factors

✔ Decentralized

✔ Trustless

✔ Portability

✔ Recoverability

✔ MFA

✔ Common Factors

✔ Decentralized

✔ Trustless

PBKDF2 is also used in…

31MFKDF

MFKDF Summary

32

MFKDF

USABILITY & FACTOR
COMPATIBILITY

EXPONENTIAL
SECURITY

CLIENT-SIDE
RECOVERY

POLICY
ENFORCEMENT

NEW & EXISTING APPLICATIONSHIGHLY PERFORMANT

https://github.com/multifactor/mfkdf

https://mfkdf.com

Thanks!

33

https://arxiv.org/abs/2208.05586

